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The envelope equation of Dysthe (1979), which provides an extension of the 
nonlinear Schrodinger equation (NLS) to fourth order in wave steepness, is used to 
discuss higher-order modulation effects on the long-time evolution of solitary wave 
envelopes in deep water. The Dysthe equation admits solitary-wave solutions, 
similar to those of the NLS. Using perturbation methods, it is shown that an initial 
disturbance in the form of a solitary wave group of the NLS evolves to a solitary 
wave of the Dysthe equation having lower peak amplitude and moving with higher 
speed than the original wave ; the increase in wave speed is caused by a downshift in 
wavefrequency . Asymptotic expressions are derived for this amplitude decrease and 
frequency downshift, which are consistent with numerical and experimental results. 

1. Introduction 
The propagation of the envelope of a weakly nonlinear wavepacket in deep water 

is governed asymptotically by the nonlinear Schrodinger equation (NLS), which 
includes the leading-order nonlinear and dispersive effects (see, for example, Yuen & 
Lake 1982). On theoretical grounds, the NLS is expected to provide an accurate 
description of the evolution of a wavepacket of small steepness E only for a limited 
time, a t  most O ( E - ~ )  wave periods. This restriction on the validity of the NLS has been 
confirmed experimentally : Feir (1967) reports that  an initially symmetric wave- 
packet of uniform frequency and moderate steepness eventually loses its symmetry 
as i t  propagates away from the wavemaker, and splits into two distinct groups of 
different frequencies. More recently, similar phenomena were observed by Su ( 1982), 
in systematic experiments with initially symmetric wavepackets of uniform 
frequency and various durations. Depending on the initial wave steepness and 
wavepacket duration, several (up to seven) distinct wave groups, which resembled 
solitary wave groups of the NLS, developed far from the wavemaker ; furthermore, 
owing to  a relative downshift in its carrier frequency and hence an increase in group 
velocity, the leading group clearly separated from the rest of the disturbance. On the 
other hand, the NLS predicts that an initially symmetric wavepacket of uniform 
frequency will always remain symmetric and, in general, will form a bound state of 
solitons which, rather than separate, exhibit recurrence phenomena. Thus the need 
for a more accurate theoretical treatment is evident. 

A first attempt to predict the observations of Feir (1967) theoretically was made 
by Roskes (1977), using the NLS, modified with some additional terms representing 
higher-order modulation effects. It is noteworthy that, although, as it turns out, 
Roskes (1977) neglected the interaction of the wave envelope with the induced mean 
flow, his numerical calculations were capable of reproducing, a t  least qualitatively, 
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the group splitting observed by Feir (1967). Later, Dysthe (1979) carried out a formal 
derivation of an envelope equation which extends the range of validity of the NLS 
to longer time, comparable with O(E-~)  wave periods; in addition to the higher-order 
terms proposed by Roskes (1977), Dysthe’s equation also includes the effect of the 
wave-induced mean flow. Lo & Mei (1985) conducted a detailed numerical study of 
the long-time evolution of short wavepackets using the full Dysthe equation, and 
found good quantitative agreement with the experiments of Su (1982). In  particular, 
they confirmed that wave-group separation is caused by a frequency downshift in the 
leading group, and that the resulting wave groups have envelopes similar to the 
familiar ‘sech ’ solitary-wave profiles of the NLS. Furthermore, based on their 
numerical solutions of the Dysthe equation, Lo & Mei (1985) (see also Lo 1986) 
pointed out that wave envelopes, which initially are in the form of a single stationary 
soliton of the NLS (in a frame moving with the group velocity), propagate with a 
finite speed which is an increasing function of the initial maximum wave amplitude. 

By assumption, the higher-order modulation terms in the Dysthe equation are 
relatively small and, therefore, their effect is expected to  become important only 
after a long time. This suggests that one should be able to make use of perturbation 
methods, in order to describe the experimentally observed deviations from the 
predictions of the NLS. Adopting this point of view, which has also proven useful in 
dealing with perturbed evolution equations in other instances (see, for example, 
Kodama & Ablowitz 1981), the present, paper is concerned with an asymptotic study 
of the long-time evolution of deep-water wavepackets, based on the Dysthe equation. 
In  the same spirit, Janssen (1983) has already developed a nonlinear stability theory 
for periodic modulations of a uniform wavetrain near the threshold for sideband 
instability. Here, however, attention is focused on localized wavepackets. More 
specifically, a perturbation expansion for small wave steepness indicates that the 
Dysthe equation admits solitary-wave solutions, similar to those of the NLS; a 
numerical continuation procedure shows that this is also the case for moderate values 
of the wave steepness. I n  addition, motivated by the experimental and numerical 
results cited above, an initial-value problem is solved asymptotically, using a 
stationary soliton of the NLS as initial condition. This initial disturbance eventually 
transforms to a solitary wave of the Dysthe equation, having lower peak amplitude 
and moving with higher speed than that of the original wave, in agreement with the 
numerical results of Lo & Mei (1985); the increase in wave speed is caused by a 
downshift in wave frequency, proportional to the square of the wave amplitude, and 
turns out to be independent of the wave-induced mean flow, to leading order in wave 
steepness. These asymptotic results are consistent with the experiments of Feir 
(1967) and Su (1982) and support the explanation of wave-group separation, 
proposed by Roskes (1977) and Lo & Mei (1985). 

2. Solitary wave envelopes 
Consider a two-dimensional modulated wavepacket of carrier wavenumber k,, 

carrier frequency a,, and small steepness E (0 < e + 1 ) ,  propagating on deep water 
( - 00 < x < 00, - co < y < 0). In dimensionless variables, using l / k o  as a lengthscale 
and l /w,  as a timescale, the free-surface elevation takes the form 

y = $eEA(X,T) exp[i(x-t)]+*+O(e*), 

where A is the complex wave envelope, which depends on the ‘slow’ variables 
X = EX, T = et, and * denotes the complex conjugate. 
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From the perturbation analysis of Dysthe (1979), correct to O(e4), it follows that 
A is governed by the evolution equation 

AT ++Ax + ie($4 xx + &4 2A *) 

+ E 2 ( - ~ ~ X X X + ~ A * A x - ~ A 2 A ~ + S i A i V { A A * } x )  = 0, (1)  

where iV stands for the Hilbert transform 

the integral being interpreted as a principal value. According to (1) ,  the wave 
envelope propagates with the group velocity (equal to 4 in dimensionless variables) 
and is slowly modulated by weak dispersive and nonlinear effects. In particular, the 
O(s)  terms in (1) represent the leading-order dispersive and nonlinear effects included 
in the NLS, while the O(s2)  terms are the higher-order corrections given by Dysthe 
(1979) ; the effect of the wave-induced mean flow is described by the last term in (1 ) .  
It is convenient to adopt a frame of reference moving with the group velocity: 

5 = 2 X - T ,  7 = E X ,  ( 2 )  

so that the envelope equation ( l ) ,  correct to the same order of approximation, 
becomes 

A ,  + iA,, + iA2A * + 8eAA *A, + 2ieA %{AA *}, = 0. (3) 

As noted by Lo & Mei (1985), the transformation ( 2 )  simplifies Dysthe's equation 
substantially ; also, this form of the evolution equation is more suited for discussing 
the spatial evolution of a wavepacket, generated by a wavemaker a t  a fixed X- 
location, as in the experiments of Su (1982). 

As is well known, the NLS, which is obtained from ( 3 )  by neglecting all O(E)  terms, 
admits solitary-wave solutions with a 'sech' profile. It is of interest, therefore, to 
examine the possibility that the higher-order equation (3) has similar solutions ; to 
this end, following Roskes (1977), we write 

where 

A = r ( 0 ;  E )  exp[i(@+ef((O; e))], 

0 = Kt--hq, 9 = ,Ufj-Cq. 

Upon direct substitution of (4) into (3), it  is found that 

and 

where 

2 
fe = ; r2,  

1 E 122 
K K K2 

ree-a2r+T r3+, [ ~ , u ~ ~ + ~ K T X { T ~ } ~ ] + - -  r5 = 0, 

( 7 )  

From (6) it is clear that higher-order effects do not modify the propagation speed of 
possible solitary-wave solutions; they merely give rise to O ( 2 )  changes in wave 
frequency and wavenumber, which can be readily calculated from ( 7 )  if the envelope 
profile r(O) is known. 
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To establish the existence of solitary waves, it is necessary to find special solutions 
of the nonlinear integral-differential equation (8), which decay as 0 --f f 00 ; as this 
task appears to be rather difficult for arbitrary values of 8 ,  we resort t o  a 
perturbation expansion for small 6 : 

where 

r ( 0 ;  e) = r o ( 0 ) + e r l ( O ) + ~ 2 r 2 ( 0 ) +  ..., 
r,,(@) = a secha0, 

with a = 1 / 2 a ~ ,  is the familiar solitary-wave profile of the NLS. Proceeding to O(e), 
it is found that rl satisfies the inhomogeneous problem : 

9 r 1 =  4, (11)  

where 4 = 16a(2dh-/.d3), (12a) 

9 is the linear operator 
1 d2 
a2 d o 2  

9 = --+6sech2a0-l, 

and S is a shorthand notation for sech 010. The homogeneous part of ( 1  1)  has two 
linearly independent solutions 

1 
3s fl = SR, f 2  = 0108R+--S, 

were R = tanh a0 ; since f 2  is unbounded as 0 + & 00 , the right-hand side of (1 1 )  has 
to be orthogonal to f,, in order for the solution of (1 1) to decay as 0 + f co : 

This solvability condition, which is trivially met here because fl is an odd function 
of 0 while 4 is even, ensures that rl --f 0 as 0 + f 00. Also, by rotating the path of 
integration to the positive imaginary k-axis and using Watson's lemma, the integral 
in (12 b )  can be evaluated asymptotically : 

therefore, since 
expansion (9) remains well-ordered as 101 + 00. 

vanishes faster than e-alBI as 101 + CO, rl = 0(Clel) and the 

In the next order of approximation O(E'),  r2 satisfies 

Again, as it is an even function of 0, @ is orthogonal to f ,  so that r2 --f 0 as 101 + 00 ; 
also, @ = o(e-"lel) and no non-uniformities arise a t  infinity. 

Formally a t  least, the above perturbation procedure can be continued to higher 
orders in E ,  and it indicates that the envelope equation (3) admits symmetric solitary- 
wave solutions with exponential tails ( r  = 0(e-.lel), 101 + 00). This claim is supported 
by numerical calculations of such solutions of the nonlinear integral-differential 
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FIQURE 1 .  Stationary solitary-wave profiles of the Dysthe equation, r (O) ,  for various values 
of the wave steepness e .  

equation (8) for finite values of e. The numerical method of solution is based on 
a pseudospectral approximation. We look for waves which are symmetric about 
Q = 0 ;  for this purpose, the semi-infinite domain 0 < 0 < co is truncated to a 
suitably large but finite domain 0 < 0 < Om, say, which forms the computational 
period and is discretized by N +  1 evenly spaced points. The values of r a t  these points 
are interpolated by a trigonometric polynomial of degree N and then r,, is 
approximated by differentiating this polynomial ; similarly, the Hilbert transform in 
(8) is computed using discrete Fourier transforms. Thus, a set of N +  1 nonlinear 
algebraic equations is obtained for the values of r at the grid points. For given p, a, 
K and E ,  the corresponding solitary-wave profile is computed by solving this set of 
equations numerically, using Newton's method, combined with continuation in e, 
starting from E = 0 with the known solitary-wave solution (10) of the NLS. 

Detailed computations were carried out for st,ationary envelopes (p = 0) with 
a = 1, K = l / d 2  ; for these parameter values, the solitary wave of the NLS (e = 0) has 
peak amplitude equal to 1. Figure 1 shows the effect of increasing E on the wave 
profile. For e less than 0.1, the numerical results are in very good agreement with the 
small-steepness expansion (9) (correct to O(e2)), and the corresponding waves are 
practically indistinguishable from the solitary wave of the NLS. For larger values of 
e, higher-order effects are more evident and cause the peak wave amplitude to 
decrease slightly. In  these computations, the specific values N = 128, 0, = 15 were 
used, after having verified that increasing this resolution had no appreciable effect on 
the numerical results. As an additional check, Dysthe's equation (3) was solved 
numerically by the split-step Fourier method of Lo & Mei (1985) for 7 > O ( E - ~ ) ,  using 
the computed stationary wave envelopes as initial conditions; i t  was confirmed that 
these waves are indeed solutions of permanent form, with error less than 5%. 
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3. Initial-value problem 
Motivated by earlier experimental and numerical results indicated in 5 1, here we 

examine the role of higher-order modulation effects in the long-time evolution of a 
stationary solitary wave of the NLS, using perturbation methods for small wave 
steepness e.  I n  particular, we solve Dysthe's equation (3) subject to the initial 
condition 

where 8 = KC, a, = 2/2a, K .  It proves convenient for the following analysis to write 

(17) A = a, secha,8 (q = 0) ,  

4 5 , q ;  4 = U ( C , r ;  4 exp(-i+gq), 

u = U,(@ + €U,(O, q) + e2U2(8, q) + . . . , 

(18) 

(19) 

and work with U rather than A .  For small E ,  i t  is natural to expand U in powers 
of € :  

where, in view of (17) ,  (lS), U, is the profile of a stationary solitary wave of the NLS, 
U, = a, sech a, 8; as is customary in perturbation theory, expansion (19) is proposed 
here keeping in mind that i t  will later be revised appropriately, in case non- 
uniformities arise owing to the appearance of secular terms. 

Upon substitution of (19) into (3), taking into account (17), i t  is found that, to O(e) ,  
U, = u1 + iv, satisfies a linear inhomogeneous equation, subject to the quiescent 
initial condition U, = 0 a t  q = 0. Taking Laplace transforms in q, 

this initial-value problem leads to a pair of coupled real equations for Q,, 6, : 

2K 
S 

sv", +;a: 9 6 ,  = -- U, X{U:},, 

where L? is the linear operator defined earlier in (13) (with a replaced by 01, and 0 
replaced by 8) ,  and A? stands for the operator 

1 d2 
a: do2 

A ZE --+2sech2a,8-1. 

Thus, solving (20) for Q,, 6, and inverting these Laplace transforms yields a formal 
solution for the O(e)  correction U,. However, before proceeding to higher order, it is 
necessary to check whether the expansion (19) remains uniformly valid; for this 
purpose, the asymptotics of U, for large q are needed. 

As usual, the asymptotic behaviour of U, for large q is deduced from the 
singularities of 0, in the complex s-plane. The form of the right-hand side of (20) 
suggests that s = 0 is a possible singularity, and, for this reason, we examine the local 
behaviour of Zi, and 6, near s = 0. Assuming first that  
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and substituting into ( 2 0 ) ,  it  is found that to O(l /s)  

9 p - ,  = 3 2 ~ a , X ,  h,(8),  

A q - ,  = - 16~a, a,  R,  Si ; 

here h,(B) stands for h(O)  defined in (12b)  (with a replaced by 01, and 0 replaced by 
8) ,  and the shorthand notation So E sech a, 8, R, = tanh a, 8 is used again. From the 
previous discussion (see 92) ,  it  follows that (22a)  has a well-behaved solution, g(8), 
say, which decays as 181+co, since the right-hand side of (22a)  satisfies the 
solvability condition (15). Similarly, (22b)  also has a well-behaved solution : 

Proceeding to 0(1), one has 
5)  

(24b)  
2 

a, 
Now, however, it is clear that (24a)  does not have an acceptable solution : in view of 
(23) ,  the right-hand side is proportional to S,R,  and the solvability condition (15) 
cannot be met. Also, it can be shown that the right-hand side of (24b)  is not 
orthogonal to the corresponding well-behaved homogeneous solution, So,  and, thus, 
no acceptable qo can be found either. These difficulties suggest that the assumptions 
made in (21)  are not valid; it turns out that (21) need to be modified as follows: 

d q o  = 7 P-1. 

P 5 a )  

(25b)  

" C  1 

C 1 
6, = -2 so + - q-,(8) + qo(8) + o( 1 ), 

s2 s 

2% = $ #OR, +s P-l(e) + Po(@ +0(1) ,  

where C, ,  C, are as yet undetermined constants. Taking into account these changes, 
p-,,q-, now are given by 

(26a)  
C 

a, 
p-1 = 3 ( a , ~ ~ , R , - ~ , ) + g ( 8 ) ,  

C 2a3 
qP1 = - ~ a , 8 S 0 + - - J S , R , ,  

a, a0 K 

and the solvability condition for ( 2 4 a ) ,  

qW1 So R, d8 = 0, s_a 
specifies the value of C,: c, = !a, KU:. 

Similarly, the solvability condition for (24 b ) ,  

a, 

JPrn p-, so do = 0, 

which can be reduced to the simpler form 

C, + 3 2 ~ a ,  a: J: h, X,(a, 88, R, -SO) d8 = 0, 
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determines C, : 

where 
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321 
C, = 2/27c3 4, 

k3 dk = 1.8031. 

According to  (25), Zi,, G, have a double pole a t  s = 0. Inverting these Laplace 
transforms, the asymptotic behaviour of U = u+iw, correct to O ( E ) ,  for q large is 

1 C 

a0 
C,qS,Ro+~(a08S,Ro-So)+g(8)  +..., 

Therefore, u,, v1 exhibit secular behaviour as 7 -+ 00 and the expansion (19) becomes 
non-uniform for €7 = O(1). From the viewpoint of perturbation theory, (29) may be 
considered as the outer limit of the inner expansion (19), which has to be matched to 
an appropriate outer expansion, in order to obtain a uniformly valid description for 
q = O(1). Here, it turns out that  this outer representation is furnished by a 
particular solitary-wave solution of the Dysthe equation, already discussed in $2. 

Indeed, returning to (4), (9), (lo), consider an almost stationary (p 4 1) solitary 
wave with slightly different amplitude, a ,  than that of the original wave: 

so that, from (6)-(8), 

YO10 

a, 
h = - Z ~ K E ,  CT = iai+a,ye+O(e2), 01 = a0+-e+O(e2) ,  0 = 8 + 2 @ ~ 7 ~ .  (31) 

Then, a Taylor-series expansion in powers of e yields 

ro = aoSo-ea, 2 p a o ~ q + B 8  SoRo+eyS,+O(e2) ,  (32a) 

(32b) 

a0 1 
2a2 

“ 0  K 

( 
rl = g(8)  + O(E) ,  f = R, + O(e), 

exp[i(@+ef)] = exp(-i$xiq) 

Thus, combining (4), (9), (32), the following expression, correct to O(s),  for the 
solitary wave is obtained : 

where 
A = Qexp(-i$ziq), (33 a )  

1 
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Comparing (18), (29) with (33), taking into account (27), (28), matching 
achieved if 

and from (30), (31) it  follows that 

Recalling the definitions of 6, ?,I in (2), the above values of p and 
interpreted, respectively, as a frequency downshift Au and a velocity increase Ac in 
the original wave, which (in the (2, t)-coordinates) are proportional to the square of 
the wave steepness : 

(35) Au = -*a2 , e2 ,  AC = %:e2. 

395 

to O(E)  is 

(34) 

h can be 

Therefore, according to the perturbation theory, correct to O ( E ) ,  an initial disturbance 
in the form of a stationary solitary wave of the NLS evolves to a slowly moving 
solitary wave of the Dysthe equation, having slightly lower peak amplitude and 
carrier frequency than those of the original wave. In principle, the asymptotic 
expressions (34), (35) could be refined by carrying the perturbation analysis to higher 
order in E .  However, i t  should be kept in mind that Dysthe’s equation (3) is correct 
to O ( E )  only, and, in order to be consistent with the full water-wave theory, it would 
be necessary to include higher-order terms in (3) before continuing the perturbation 
analysis. 

The asymptotic expressions (34), (35) are in good agreement with results obtained 
from numerical solutions of the Dysthe equation (3), subject to the initial condition 
(17), for small wave steepness E .  The numerical calculations were carried out using 
the split-step Fourier method of Lo & Mei (1985), with a computational period in 6 
consisting of 256 grid points and step sizes A6 = 0.165, A?,I = 5 x In  the 
numerical solution, it was most convenient to monitor the evolution of the 
disturbance by recording the peak amplitude and the speed of the wave envelope in 
the (6, T)-coordinate system which, in accordance with the computations of Lo & Mei 
(1985), was observed to be an increasing function of E and the initial amplitude a,. 
On the other hand, from (5), (34), it  follows that this same speed is given 
asymptotically by 

(36) h - 8  2 
$0 E .  

- -  
K 

Figure 2 shows a comparison for various values of E of the asymptotic result (36) with 
estimates of the wave-group speed from numerical solutions of (3), using a, = 1 in 
(17). As expected, the agreement becomes better as E is decreased, but even for 
moderately small E the asymptotic result (36) is reasonable. Similar agreement with 
numerical results is found for the envelope peak amplitude, which follows the 
asymptotic formula in (34) quite closely; of course, this is also due to the fact that, 
as is evident from figure 1, the contribution of r, (Q) to the envelope profile is very 
small for E < 0.1 and it is masked by the O ( E )  modification of the peak amplitude, 
given in (34). We also remark that the numerical solutions indicate the presence of 
small-amplitude dispersive waves behind and ahead of the slowly moving wave 
envelope (see also Lo 1986) ; as suggested by the perturbation theory, these waves are 
most likely transients (represented by the neglected terms in (29)) which, however, 
eventually reach the ends of the computational domain and can cause appreciable 
numerical error for moderate values of E .  Furthermore, it is interesting to note that 
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FIQ~JRE 2. Comparison between asymptotic and numerical results for the envelope speed (in 
(&g)-coordinate system), A / K ,  as a function of the wave steepness E .  -, numerical; - 
asymptotic. 

the 
_ _  

the speed change in (35) is independent of the wave-induced mean flow, a t  least to 
leading order in E ;  this suggests an explanation for the wave-group splitting 
predicted by the numerical calculations of Roskes (1977), even though the moan- 
flow term of the Dysthe equation was neglected. 

The asymptotic results derived in this paper support the explanation, proposed by 
Roskes (1977) and Lo &, Mei (1985), for the wave-group separation observed in the 
experiments of Feir (1967) and Su (1982). Although the simplest possible initial 
condition consisting of a single soliton was studied in detail, it is anticipated that, for 
more general initial conditions so that more than one solitary wave groups are 
present, higher-order effects will give rise to frequency shifts and speed changes 
depending on the amplitude of each group, thus causing group splitting. It appears 
that the asymptotic methods developed here can be extended to study the evolution 
of more general initial disturbances and thereby obtain explicit expressions for these 
frequency shifts and speed changes. 

This work was supported by the Office of Naval Research under project NR062- 
742 and by the National Science Foundation Grant MSM-8451154. 
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